Semiregular Automorphisms of Cubic Vertex-transitive Graphs

نویسندگان

  • JOY MORRIS
  • GABRIEL VERRET
چکیده

We characterise connected cubic graphs admitting a vertextransitive group of automorphisms with an abelian normal subgroup that is not semiregular. We illustrate the utility of this result by using it to prove that the order of a semiregular subgroup of maximum order in a vertex-transitive group of automorphisms of a connected cubic graph grows with the order of the graph, settling [2, Problem 6.3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiregular Automorphisms of Cubic Vertex-Transitive Graphs and the Abelian Normal Quotient Method

We characterise connected cubic graphs admitting a vertex-transitive group of automorphisms with an abelian normal subgroup that is not semiregular. We illustrate the utility of this result by using it to prove that the order of a semiregular subgroup of maximum order in a vertex-transitive group of automorphisms of a connected cubic graph grows with the order of the graph. ∗This work was suppo...

متن کامل

Semiregular Automorphisms of Cubic Vertex Transitive Graphs

It is shown that for a connected cubic graph Γ , a vertex transitive group G ≤ AutΓ contains a large semiregular subgroup. This confirms a conjecture of Cameron and Sheehan (2001).

متن کامل

Cubic Non-Cayley Vertex-Transitive Bi-Cayley Graphs over a Regular $p$-Group

A bi-Cayley graph is a graph which admits a semiregular group of automorphisms with two orbits of equal size. In this paper, we give a characterization of cubic nonCayley vertex-transitive bi-Cayley graphs over a regular p-group, where p > 5 is a prime. As an application, a classification of cubic non-Cayley vertex-transitive graphs of order 2p3 is given for each prime p.

متن کامل

Semiregular automorphisms of vertex-transitive cubic graphs

An old conjecture of Marušič, Jordan and Klin asserts that any finite vertextransitive graph has a non-trivial semiregular automorphism. Marušič and Scapellato proved this for cubic graphs. For these graphs, we make a stronger conjecture, to the effect that there is a semiregular automorphism of order tending to infinity with n. We prove that there is one of order greater than 2.

متن کامل

Permutation Groups, Vertex-transitive Digraphs and Semiregular Automorphisms

A nonidentity element of a permutation group is said to be semiregular if all of its orbits have the same length. The work in this paper is linked to [6] where the problem of existence of semiregular automorphisms in vertex-transitive digraphs was posed. It was observed there that every vertex-transitive digraph of order pk or mp, where p is a prime, k 1 and m p are positive integers, has a sem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014